Research Article

The ALADINO Study: A National Study of Prevalence of Overweight and Obesity in Spanish Children in 2011

Napoleón Pérez-Farinós,1 Ana M. López-Sobaler,2 M. Ángeles Dal Re,1 Carmen Villar,1 Estefanía Labrado,1 Teresa Robledo,1 and Rosa M. Ortega2

1 Spanish Agency for Food Safety and Nutrition, Ministry of Health, Social Services and Equality, C/ Alcalá 56, 28071 Madrid, Spain
2 Department of Nutrition, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain

Correspondence should be addressed to Napoleón Pérez-Farinós; nperezf@msssi.es

Received 23 April 2013; Accepted 7 August 2013

Academic Editor: Nina Cecilie Øverby

Copyright © 2013 Napoleón Pérez-Farinós et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of the study was to determine the prevalence of overweight and obesity in children in Spain using different sets of cut-off criteria, through a community-based cross-sectional study. The study was conducted in a representative sample of Spanish children between 6 and 9 years, recruited in Spanish schools, between October 2010 and May 2011. 7,569 boys and girls were selected. All were weighed and measured, and their parents were asked about their socioeconomic background, food habits and physical activity. The BMI of each was calculated, and the prevalence of overweight and obesity was determined by age and sex using Spanish reference tables (SPART), IOTF reference values, and WHO growth standards. The prevalence of overweight in boys ranged from 14.1% to 26.7%, and in girls from 13.8% to 25.7%, depending on the cut-off criteria. The prevalence of obesity in boys ranged from 11.0% to 20.9%, and in girls from 11.2% to 15.5%. The prevalence of obesity was the highest among those same children when using the SPART or WHO criteria. Overweight and obesity remain widespread among Spanish children; a consensus on the definition of overweight and obesity cut-off criteria is necessary.

1. Introduction

Child obesity has become a serious public health problem [1] and has shown an alarming trend in growth in recent years across Europe [2], including Spain [3]. Overweight and obesity are associated with cardiovascular and cerebrovascular disease, diabetes, high blood pressure, dyslipidaemia, locomotor abnormalities, and even some forms of cancer—diseases with high rates of mortality and morbidity that place health systems under economic strain [2, 4]. Such morbidity can also lead to a loss of quality of life, sometimes early in life. Many children who are overweight before puberty remain overweight as young adults, bringing forward the mean age of onset of the above diseases [5, 6].

Tackling the child obesity epidemic requires accurate, up-to-date information be at hand. In Spain, the Encuesta Nacional de Salud (ENSE; the National Health Survey) provides data on overweight and obesity among children every three years [7]. However, the survey relies on self-declared height and body weight measurements, which reduces the accuracy of the final results. The last scientific study on child obesity in Spain that used objective measurements was the enKid [8] study—but that was back in 2000. These data are, therefore, now out of date. The measurement of overweight and obesity in children has the added difficulty that reference values for each age group and sex are required; unlike in adults, these conditions cannot be defined by single, fixed body mass index (BMI) values (i.e., overweight ≥25 and <30, and obesity ≥30 in adults). A number of criteria for defining overweight and obesity BMI in children exist, but the final prevalence values they supply can differ. Comparisons of obesity prevalence using different criteria have been done previously in other countries, and the differences between prevalences are significant [9–12].

The aim of the present work was to determine the prevalence of overweight and obesity in Spanish children aged 6–9 years, including regional differences, and to examine whether the different sets of cut-off criteria commonly used
in such calculations lead to any important differences in the results obtained, within the ALADINO study. Deeper analysis concerning health habits and social, economical, and cultural factors will be analysed later.

2. Materials and Methods

The ALADINO (ALimentación, Actividad Física, Desarrollo Infantil y Obesidad—Food, Physical Activity, Child development and Obesity) study was a cross-sectional study of Spanish children of primary school age (6–9 years inclusive) performed under the auspices of the Agencia Española de Seguridad Alimentaria y Nutrición (AESAN; Spanish Agency for Food Safety and Nutrition) between October 2010 and May 2011.

2.1. Sample Size and Design. For the present work, the sample size required in order to estimate proportions with an accuracy of 2% (d = 0.02) and for α = 0.05 was determined. The expected proportion of overweight/obese children was expected to be around 20%. A design effect of 1.2 was applied to estimate the final sample size.

The sample was selected using a multistep method to ensure it was representative of Spanish boys and girls aged 6, 7, 8, and 9 years. The sample was first stratified by geopolitical region. Simple random sampling was used to select one province from each region, except for those regions with only one province and for the Spanish autonomous cities of Ceuta and Melilla on the North African Coast. Each selected province was further stratified by the size of its population centres (<50,000, 50,000–100,000, 100,000–500,000, and over 500,000 inhabitants). Schools were then selected within each population stratum, again by simple random sampling. The number of private and public schools in each province was taken into account so that the proportions would be adequately represented in the final sample. At each school the classes corresponding to the target age groups were selected, and all children in each were selected too.

2.2. Data Collection. This study formed a part of the Childhood Obesity Surveillance Initiative (COSI), promoted by the European Office of the WHO. Seventeen member states are involved in recording data for children aged 6–9 years, using a common methodology to allow comparisons between countries [13]. The ALADINO study involved the original COSI questionnaires, translated and adapted for the Spanish population. A total of three questionnaires were employed, one for the head teacher of each participating school, one for the parents of participating children, and one for the research personnel, which was completed during personal interviews with each participating child. Further analyses will be done with school and family questionnaires’ data.

In the personal interview, each child’s body weight and height were measured. Weight and height were determined using a digital electronic balance (Tanita UM-076 scale) (range 0.1–150 kg, precision 100 g) and a portable stadiometer (Tanita Tantoise) (range 0–207 cm, precision 1 mm), respectively. For these measurements, subjects were barefoot and wore only underwear. Subject BMI was calculated as weight (kg)/height² (m²). All anthropometric measurements were made at the schools in the morning and following norms set out by the World Health Organization [14]. The measures were made by research personnel who were specifically trained.

2.3. Statistics Analysis. The mean BMIs for the boys and girls separately, and for both sexes together, within each age group, were determined. The prevalence of overweight and obesity by sex and age group was also determined using three different sets of cut-off criteria: (a) the definitions of overweight and obesity reflected by percentiles in the reference tables for the Spanish population (SPART criteria) [15]. These criteria were published by the Spanish Orbe gozo Foundation and were based in longitudinal and cross-sectional studies performed among children from Bilbao (Spain). Overweight was defined between the 85th and 97th percentiles, and obesity was defined over the 97th percentile; (b) using IOTF reference values (overweight: cut-off points corresponding to an adult BMI ≥ 25 and <30 kg/m²; obesity: cut-off point corresponding to an adult BMI ≥ 30 kg/m²) [16]; and (c) using the WHO growth standards (overweight: BMI ≥ 1 SD and <2 SD; obesity: BMI ≥ 2 SD) [17]. The prevalence of overweight + obesity using the different criteria was also determined for both sexes together within each Autonomous Spanish Regions.

The McNemar test for independent samples was used (comparing two sets of data each time) to determine the significance of the differences in the prevalence values of overweight and obesity returned using these different sets of cut-off criteria. This test was performed for both sexes together and for boys and girls separately, for all age groups. The Student t test was used to compare the BMIs of the girls and boys within age groups. All calculations were performed using SPSS v.19 software.

3. Results

The required sample size was determined to be 1,844 children for each age group; the total required was therefore 7,376. The actual sample size was 7,659 (3,931 boys and 3,728 girls) from 144 schools. 22 schools (11.7%) rejected to participate in the study.

Table 1 shows the mean bodyweights, heights, and BMIs of the boys and girls in the different age groups. No significant difference was seen between the BMI of the girls and boys within any age group.

The prevalence of overweight was found to be significantly higher when determined using the WHO standards and the IOTF values than when using the SPART criteria (P < 0.001 in all cases). No significant differences were seen between the percentage of overweight children as determined by the WHO standards and IOTF values, except between boys and girls aged 6, for whom the WHO standards gave a significantly higher value (Table 2).

The prevalence values for obesity were significantly higher when calculated using the WHO standards than when
Table 1: Weight, height, and body mass index by sex and age (mean and standard deviations).

<table>
<thead>
<tr>
<th></th>
<th>Weight (kg)</th>
<th>Height (cm)</th>
<th>BMI (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Both sexes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>30.4</td>
<td>7.5</td>
<td>129.5</td>
</tr>
<tr>
<td>6 years</td>
<td>24.9</td>
<td>4.7</td>
<td>120.9</td>
</tr>
<tr>
<td>7 years</td>
<td>28.5</td>
<td>5.9</td>
<td>126.6</td>
</tr>
<tr>
<td>8 years</td>
<td>31.8</td>
<td>6.6</td>
<td>132.1</td>
</tr>
<tr>
<td>9 years</td>
<td>35.7</td>
<td>7.7</td>
<td>137.3</td>
</tr>
<tr>
<td>Boys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>30.7</td>
<td>7.5</td>
<td>129.9</td>
</tr>
<tr>
<td>6 years</td>
<td>25.1</td>
<td>4.7</td>
<td>121.4</td>
</tr>
<tr>
<td>7 years</td>
<td>28.9</td>
<td>6.0</td>
<td>127.1</td>
</tr>
<tr>
<td>8 years</td>
<td>31.9</td>
<td>6.5</td>
<td>132.4</td>
</tr>
<tr>
<td>9 years</td>
<td>36.1</td>
<td>7.6</td>
<td>137.7</td>
</tr>
<tr>
<td>Girls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>30.1</td>
<td>7.5</td>
<td>129.0</td>
</tr>
<tr>
<td>6 years</td>
<td>24.7</td>
<td>4.7</td>
<td>120.5</td>
</tr>
<tr>
<td>7 years</td>
<td>28.0</td>
<td>5.8</td>
<td>126.1</td>
</tr>
<tr>
<td>8 years</td>
<td>31.7</td>
<td>6.7</td>
<td>131.8</td>
</tr>
<tr>
<td>9 years</td>
<td>35.3</td>
<td>7.8</td>
<td>136.9</td>
</tr>
</tbody>
</table>

BMI: body mass index; SD: standard deviation.

Table 2: Prevalence of overweight, by sex and age, as determined using the different sets of criteria.

<table>
<thead>
<tr>
<th>n</th>
<th>Prevalence of overweight (95% CI)</th>
<th>McNemar test for comparison of proportions returned by the different sets of criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPA* 95% CI IOTF† WHO‡ SPA-WHO§ IOTF-WHO¶ SPA-IOTF¶</td>
<td></td>
</tr>
<tr>
<td>Both sexes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>7,659 14.0 (13.2–14.8) 24.2 (23.2–25.2) 26.2 (25.2–27.2)</td>
<td><0.001 <0.001 <0.001</td>
</tr>
<tr>
<td>6 years</td>
<td>1,829 11.1 (9.7–12.5) 19.4 (17.6–21.2) 24.5 (22.6–26.5)</td>
<td><0.001 <0.001 <0.001</td>
</tr>
<tr>
<td>7 years</td>
<td>1,861 13.2 (11.6–14.7) 24.5 (22.5–26.4) 25.8 (23.8–27.7)</td>
<td><0.001 0.183 <0.001</td>
</tr>
<tr>
<td>8 years</td>
<td>1,961 14.9 (13.4–16.5) 26.1 (24.1–28.0) 26.6 (24.6–28.5)</td>
<td><0.001 0.629 <0.001</td>
</tr>
<tr>
<td>9 years</td>
<td>2,009 16.5 (14.9–18.1) 26.4 (24.5–28.3) 27.7 (25.7–29.6)</td>
<td><0.001 0.219 <0.001</td>
</tr>
<tr>
<td>Boys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>3,931 14.1 (13.0–15.2) 23.8 (22.4–25.1) 26.7 (25.3–28.1)</td>
<td><0.001 <0.001 <0.001</td>
</tr>
<tr>
<td>6 years</td>
<td>927 10.5 (8.5–12.5) 17.9 (15.5–20.4) 26.2 (23.4–29.1)</td>
<td><0.001 <0.001 <0.001</td>
</tr>
<tr>
<td>7 years</td>
<td>954 12.1 (10.0–14.1) 23.5 (20.8–26.2) 25.9 (23.1–28.7)</td>
<td><0.001 0.121 <0.001</td>
</tr>
<tr>
<td>8 years</td>
<td>1,018 15.8 (13.6–18.0) 26.3 (23.6–29.0) 26.5 (23.8–29.3)</td>
<td><0.001 0.948 <0.001</td>
</tr>
<tr>
<td>9 years</td>
<td>1,032 17.7 (15.3–20.0) 26.8 (24.3–29.5) 27.9 (25.2–30.6)</td>
<td><0.001 0.542 <0.001</td>
</tr>
<tr>
<td>Girls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>3,728 13.8 (12.7–15.0) 24.6 (23.3–26.0) 25.7 (24.3–27.1)</td>
<td><0.001 0.051 <0.001</td>
</tr>
<tr>
<td>6 years</td>
<td>901 11.7 (9.6–13.8) 21.0 (18.3–23.6) 22.8 (20.1–25.5)</td>
<td><0.001 0.046 <0.001</td>
</tr>
<tr>
<td>7 years</td>
<td>907 14.3 (12.0–16.6) 25.5 (22.7–28.3) 25.6 (23.1–28.3)</td>
<td><0.001 1.000 <0.001</td>
</tr>
<tr>
<td>8 years</td>
<td>943 14.0 (11.8–16.2) 25.9 (23.1–28.7) 26.6 (23.8–29.4)</td>
<td><0.001 0.569 <0.001</td>
</tr>
<tr>
<td>9 years</td>
<td>977 15.2 (13.0–17.5) 26.1 (23.3–28.8) 27.4 (24.6–30.2)</td>
<td><0.001 0.219 <0.001</td>
</tr>
</tbody>
</table>

*Prevalence calculated using SPART criteria (BMI ≥ P₈₅ and <P₉₇).
†Prevalence calculated using IOTF reference values (cut-off points corresponding to an adult BMI ≥ 25 and <30 kg/m²).
‡Prevalence calculated with WHO growth standards (BMI ≥ 1 SD and <2 SD).
§McNemar test for comparison of prevalence of overweight returned using the SPART and WHO criteria.
¶McNemar test for comparison of prevalence of overweight returned using IOTF and WHO criteria.
Table 3: Prevalence of obesity, by sex and age, as determined using the different sets of criteria.

<table>
<thead>
<tr>
<th></th>
<th>Prevalence of obesity (95% CI)</th>
<th>McNemar test for comparison of proportions returned by the different sets of criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPA*</td>
<td>95% CI</td>
</tr>
<tr>
<td>Both sexes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>7,659</td>
<td>16.8</td>
</tr>
<tr>
<td>6 years</td>
<td>1,829</td>
<td>11.5</td>
</tr>
<tr>
<td>7 years</td>
<td>1,861</td>
<td>15.8</td>
</tr>
<tr>
<td>8 years</td>
<td>1,961</td>
<td>18.0</td>
</tr>
<tr>
<td>9 years</td>
<td>2,009</td>
<td>22.4</td>
</tr>
<tr>
<td>Boys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>3,931</td>
<td>19.3</td>
</tr>
<tr>
<td>6 years</td>
<td>927</td>
<td>14.0</td>
</tr>
<tr>
<td>7 years</td>
<td>954</td>
<td>18.6</td>
</tr>
<tr>
<td>8 years</td>
<td>1,018</td>
<td>20.2</td>
</tr>
<tr>
<td>9 years</td>
<td>1,032</td>
<td>23.6</td>
</tr>
<tr>
<td>Girls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>3,728</td>
<td>14.2</td>
</tr>
<tr>
<td>6 years</td>
<td>901</td>
<td>8.8</td>
</tr>
<tr>
<td>7 years</td>
<td>907</td>
<td>12.7</td>
</tr>
<tr>
<td>8 years</td>
<td>943</td>
<td>15.6</td>
</tr>
<tr>
<td>9 years</td>
<td>977</td>
<td>19.2</td>
</tr>
</tbody>
</table>

*Prevalence calculated using SPART criteria (BMI ≥ P97).
†Prevalence calculated using IOTF reference values (cut-off point corresponding to an adult BMI ≥ 30 kg/m²).
‡Prevalence calculated with WHO growth standards (BMI ≥ 2 SD).
§McNemar test for comparison of prevalence of overweight returned using the SPART and WHO criteria.
¶McNemar test for comparison of prevalence of overweight returned using IOTF and WHO criteria.

4. Discussion

Overweight and obesity in children are serious public health problems in Spain and other developed countries. Their prevalence in Spain has been increasing in recent years, as revealed by studies and surveys performed at both state and regional level [7, 18–22]. According to data published in 2006 by the ENSE, the prevalence of overweight in children aged 5–9 years was 21.4% (19.5% in boys and 23.4% in girls) [3]. These figures are lower than those recorded in the present study when prevalence was determined using the IOTF or WHO criteria, but higher than those recorded by the SPART criteria. The prevalence of obesity in 5–9 year-olds, according to the same ENSE data, was 15.4%, 15.1% in boys and 15.7% in girls [3]. These figures are lower than those recorded in the present study when measured in the same way. For girls, the prevalence of overweight was reported as 13.9% in the enKid study and was 13.8% in the present study. The prevalence of obesity in the enKid study, again measured using the SPART criteria, was 21.7%, while in present study it was 19.8% when using the same cut-off same criteria. In girls, the prevalence of obesity was 9.8% in the enKid study, and 14.5% in the present study. This was the only significant difference between the findings of these studies. With the exception of the latter difference,
the present results suggest a stabilising of overweight and obesity in Spain, rather than the suspected increase [7, 18–22]; this agrees with that recorded in other countries [24, 25].

The prevalences of overweight and obesity recorded in the present study using the WHO standards or the IOTF reference values were higher than those recorded in France [26], England [27], and Portugal [28], lower than those recorded in Italy [29], and similar to those recorded in Malta [30]. The prevalence of overweight recorded in the present work using the WHO standards was also higher than that reported for the USA in girls and boys aged 6–11 years using the same criteria, although the prevalence of obesity among these American boys was greater than that recorded (using the same criteria) in the present work for Spanish boys [31].

In Spain, the NAOS (Nutrición, Actividad Física y Prevención de la Obesidad; Nutrition, Physical Activity and Prevention of Obesity) Strategy [32] of the Ministry of Social Services and Equality insists on the need to establish adequate information sources regarding nutrition and overweight/obesity and to create an “obesity observatory” in order to remain up to date in this area [33]. This has been endorsed by the Ley de Seguridad Alimentaria y Nutrición (Law on Food Safety and Nutrition) of 2011 [34]. The ENSE [7] collects data on the body weight and height of children from 2 years of age onwards, but it relies on self-declared data, and there is a strong possibility that any prevalence of obesity figures estimated from the calculated BMIs will be an underestimate. The fact that data are collected every three years has the advantage that trends can be established, but any individual values need to be used with caution. The enKid study [8], which was undertaken in 2000, was the last performed in Spain that involved objective data collection. The notable demographic changes that have occurred in the Spanish population in recent years therefore render the present study’s results all the more important.

Since the high mortality and morbidity figures associated with chronic disease were first made widely known, efforts have been stepped up to modify the factors that influence them, including obesity, diet, and physical activity [2, 35]. The results of the present work indicate that child obesity remains a major public health problem in Spain, and that the efforts that have been made over the years to stem it are no less required today. Prevention should still be understood as the main pillar in this battle; people therefore need to be made aware of healthy habits so that potentially harmful behaviours can be altered. A healthy, balanced diet and
the need for regular exercise should be promoted at school, in
the workplace, and at family, community, and health service
level. Education remains the cornerstone in the fight against
obesity, and strong cooperation between different parties is
needed if the best results are to be obtained [33, 36].

The fact that obesity levels might have reached a plateau
may mean that the resources put into fighting this epidemic
are beginning to meet with success. However, it would be
dangerous to think that the battle is won and that from now
on obesity figures are likely to fall. Rather, efforts need to be
increased to bring the prevention message to as many people
as possible and should be accompanied by studies and the
development of information sources that can help optimise
the designation of resources.

The present work highlights the problem of using dif-
ferent criteria to define overweight and obesity in children.
The prevalence of overweight was recorded as significantly
lower when the SPART criteria were used rather than the
IOTF reference values or WHO standards, with no significant
differences between the results provided by these latter two
sets of criteria. However, with respect to the prevalence of
obesity, the results recorded by all three systems were
significantly different to one another. Such a situation can
only lead to confusion and a lack of confidence in the
reliability of any results made known. To date, no consensus
exists regarding which set of criteria should be used. Both
the IOTF reference values and the WHO growth standards
were produced with the idea of providing a common set of
criteria that could be used with any population. However,
their existence has led to even greater confusion, with parties
often choosing the set of criteria that best matches their
opinions or best suits their interests [37].

The main strengths of the present study lie in the sample
size, and the sample’s representativeness of the population of
Spanish children aged 6–9 years (which took into account of
different geopolitical regions, different sized population
centres, and types of school). The methodology laid out in the
COSI was also used. The results obtained are therefore reliable
and render the ALADINO study the most authoritative with
respect to the prevalence of child overweight and obesity in
Spain. The main limitation of the study lies in the fact that at
the regional level, while the representativeness of the sample
is assured at the level of “all children aged 6–9,” it is less
reliable for the different sexes and age groups taken separately
(in particular for the smaller regions). For better results at
this geopolitical level, studies using the same methodology
but specific for each region would have to be performed.

5. Conclusions

The results show that overweight and obesity remain
widespread among Spanish children, although a plateau
could have been reached. An East-West gradient in the
overweight and obesity prevalence is observed in Spain.
Periodic studies on overweight and obesity prevalence should
be conducted to assess the trends. The overweight and obesity
prevalences are significantly different when measured with
different criteria. A consensus on the definition of overweight
and obesity cut-off criteria is needed.

References

young people: a crisis in public health,” Obesity Reviews, vol. 5,
Obesity in the WHO European Region and the Strategies For
Response, WHO Regional Office for Europe, Copenhagen,
Denmark, 2007.
de Sanidad y Politica Social, 2010, http://www.msc.es/estad-
obesity, and mortality in a large prospective cohort of persons
50 to 71 years old,” The New England Journal of Medicine, vol.
impact of childhood obesity on health systems: a systematic
preschool children,” Proceedings of the Nutrition Society, vol. 69,
nov, pp. 204–210, 2010.
encuestaNacional/home.htm.
S. Santana, and L. P. Quintana, “Obesidad en la infancia y
adolescencia en España. Resultados del estudio enKid (1998–
changes in prevalence of overweight and obesity in Czech
7-year-old children: evaluation of different cut-off criteria of
childhood obesity,” Obesity Reviews, vol. 12, no. 7, pp. 483–491,
2011.
obesity among Portuguese children (6–8 years old) using three
7, no. 6, pp. 413–422, 2012.
in school-aged children,” Canadian Journal of Dietetic Practice
[12] I. Koválskys, C. Rausch Herscovici, and M. J. de Gregorio,
“Nutritional status of school-aged children of Buenos Aires,
Argentina: data using three references,” Journal of Public Health,
www.euro.who.int/en/what-we-do/health-topics/disease-pre-
vention/nutrition/policy/member-states-action-networks/
childhood-obesity-surveillance/european-childhood-obesity-
surveillance-initiative-cosi.
[14] World Health Organization, “Physical status: the use and inter-
pretation of anthropometry,” WHO Technical Report Series
[15] B. Sobradillo, A. Aguirre, U. Aresti et al., Curvas y Tablas de
Crecimiento (Estudios Longitudinal y Transversal), Fundacjión
lishing a standard definition for child overweight and obesity

Submit your manuscripts at
http://www.hindawi.com